Sparse signal recovery via minimax‐concave penalty and ‐norm loss function
نویسندگان
چکیده
منابع مشابه
Beyond $\ell_1$-norm minimization for sparse signal recovery
Sparse signal recovery has been dominated by the basis pursuit denoise (BPDN) problem formulation for over a decade. In this paper, we propose an algorithm that outperforms BPDN in finding sparse solutions to underdetermined linear systems of equations at no additional computational cost. Our algorithm, called WSPGL1, is a modification of the spectral projected gradient for `1 minimization (SPG...
متن کاملBeyond ℓ1-norm minimization for sparse signal recovery
Sparse signal recovery has been dominated by the basis pursuit denoise (BPDN) problem formulation for over a decade. In this paper, we propose an algorithm that outperforms BPDN in finding sparse solutions to underdetermined linear systems of equations at no additional computational cost. Our algorithm, called WSPGL1, is a modification of the spectral projected gradient for `1 minimization (SPG...
متن کاملSparse Signal Recovery via Correlated Degradation Model
Sparse signal recovery aims to recover an unknown signal x ∈ R from few non-adaptive, possibly noisy, linear measurements y∈R using a nonlinear sparsity-promoting algorithm, under the assumption that x is sparse or compressible with respect to a known basis or frame [1]. Specifically, y = Ax+ e, where A ∈ Rm×n is the measurement matrix, e ∈ R is the measurement error, and m n. Many of the spars...
متن کاملSparse Signal Recovery via ECME Thresholding Pursuits
The emerging theory of compressive sensing CS provides a new sparse signal processing paradigm for reconstructing sparse signals from the undersampled linear measurements. Recently, numerous algorithms have been developed to solve convex optimization problems for CS sparse signal recovery. However, in some certain circumstances, greedy algorithms exhibit superior performance than convex methods...
متن کاملClutter Suppressiuon via Sparse Space-time Signal Recovery
This paper presents a novel algorithm for space-time adaptive processing (STAP), by exploiting the characteristic of sparsity in the radar echo in Spatial-Doppler domain. Unlike traditional algorithm for STAP, our new method needs much less (even only one) training cells to eliminate the clutter energy in the test cell and reveal the target buried in strong clutter clearly. Owing to its excelle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IET Signal Processing
سال: 2018
ISSN: 1751-9675,1751-9683
DOI: 10.1049/iet-spr.2018.5130